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• Basically an IMU can used for two main purposes
– To measure aircraft attitude information ( Pitch, Roll and yaw)

• Accelerometers to measure pith and roll information
• Gyroscope to measure pitch, roll and yaw information
• Magnetometer to measure pitch and roll information

– To measure aircraft position information (Dead Reckoning)
• Stable platform (Gyros and Accelerometer are mounted on a gimbal platform)
• Strap down platform (Gyros and Accelerometer are Strapped it on body of an 

aircraft)
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Pitch Roll Yaw
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• Three-axis accelerometer can be modeled as

Estimation of Angle with 
Accelerometer
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we assume that F=0 then the output of accelerometer is
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Rotating the gravity into the body frame of the sensor
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• The expected accelerometer data in the body frame is defined by

• Let the component of acceleration is defined by its axis
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• The measured angles are only the estimated angles not the actual angels.
• This method provides quick and very simple way of estimating pitch and roll

angle from the accelerometer.
• However we assumed that the forces acting on the accelerometer was only

gravity.
• Vibration and other external forces will affect our pitch and roll angle

measurement.
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Estimation of Angle with 
Gyroscope

• Rate gyro can also be used to measure the attitude of vehicle. unlike
accelerometer rate gyros are not affect by external acceleration and external
forces. Gyro based measurement is immune to external forces.

• Since roll, pitch, and yaw each occur in different reference frames, we need to
take the rate gyro outputs and rotate them into the appropriate frames in order to
get the Euler's rate.
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This method helps to use rate gyros to estimate angles that are not sensitive to vibration
and other external forces. However rate gyros are noisy and imperfect, every time we
add new gyro measurements, we add errors to our angle estimates. Over time, errors will
accumulate, causing our gyro-based angles estimates to drift over time.
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Combining accelerometer and rate 
Gyro data

• Angle estimate based on rate gyros alone drift over time, making them unreliable
in the long-term purpose or application.

• Angle estimates based on accelerometers do not cause angle estimates to drift, but
they are sensitive to external forces like vibration, making short-term estimates
unreliable.

• Here we are going to discuss about how to combine the outputs of both types of
sensor to produce angle estimates that are resistant to both vibration and immune
to long-term drift.

• Here the step is classified into two types
– Prediction (by using gyroscope reading to measure incremental changes in the

angle).
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• Estimation (by means of using accelerometer reading to correct the rate gyro
drift).

• In updating step we assume accelerometer based angle estimation is close to true
value .

• We take the measured angle (from the accelerometers) and the predicted angle
(from the rate gyros), compute the difference, and add a portion of the difference
to the final angle estimate.
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• L is numeric value between 0 and 1.

• As approaches L=1, the accelerometers are trusted more and the rate gyros are trusted
less. This makes the angle estimates less sensitive to rate gyro noise and biases, but
more sensitive to vibration and other external forces.

• As approaches L=0, rate gyros are trusted more and the accelerometers are trusted
less. This makes the angle estimates more sensitive to rate gyro noise and biases, but
less sensitive to vibration and other external forces.

 0  gyro based angle mesurement is used 

                   (accelerometer measurment become zero) 

 1  accelerometer based angle mesurement is used 

                   (gyros measurment become z

if L

if L
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• This formulation can be called a “fixed-gain observer” and it looks similar to that
of Complementry Filter and Kalman Filter.

• The main difference is that in a Kalman Filter, the observer gain is selected
optimally using known characteristics of the physical system.

• In addition, a Kalman Filter can exploit knowledge of the physical system so that
accelerometer data (and other data) needn’t be converted to angles before using it
to make corrections to the angle estimates.
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Complementary filter

angle = 0.98*(angle+gyrodata*dt) +0.02*(accData);
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Is Accelerometer helps 
to measure velocity 

and position?
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• The answer is yes…… and no……….
• It depends upon how much accuracy we are in needed for our application.
• The low cost accelerometer are very less in accuracy result in every poor

estimation in position and velocity.
• The accuracy not only because of low cost sensor but also for misalignment of

sensor position in the body frame. Small misalignment errors may leads to high
errors in acceleration measurement, which translate into more error in velocity
estimation and much more error in position estimate.
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Estimation of Position 
and velocity
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Expected Accuracy of Velocity 
and Position Estimates
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How to reduce the error?

• Reduce the Distortions caused by an Accelerometer.
• Reduce the Distortions caused by gyroscope.
• Reduce the Distortions caused by Magnetometer.
• By using any sensor fusion technique. (Eg.GPS INS Integration).

Kaviyarasu A, MIT Aerospace, Chennai



Distortions by Accelerometer

• The simplified accelerometer mentioned in the above equation will not
consider the account of cross-axis misalignment, temperature varying
output bias and scale factors. All these factor will affects accelerometer
sensor output and affect accuracy of velocity and position
measurement.

• The more complete model of the accelerometer is given below
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• The sensitivity matrix encodes expected accelerometer raw output for a 
given measured acceleration.

• The misalignment matrix describes the effect of cross-axis
misalignment unlike bias and sensitivity terms, it is not affected be
temperature.
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• When using accelerometer data, we measure only value, is am but what
we really needed is the actual acceleration amc before scale factors,
biases, and misalignment distort the measurement. That is, we want to
take the measurement and extract the term . Solving, we get

In order to obtain the best accuracy, the terms should be determined
experimentally over the full operating temperature of the sensor

 1 1( ) ( )mc a a m aa S T M a T  

mca

corrected accelerometer measurement vectormca 
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Distortions by Gyroscope

• Let the Vector P is defined as 

• Usually coupling between the acceleration and rate gyro output Cga is small enough
that can be neglected, but in high acceleration is expected (e.g. on a rocket), this term must
be measured and included in the model for the best accuracy.

a

mc

g

measured angular rate vector

matrix encoding the sensitivity 

          of rate gyro axes to acceleration

a corrected accelerometer measur e

C

em nt

mp 





 1 1
*ga mcC( ) ( ) ag g m gP S T M p T   

p

p q

r

 
 

  
 
 

Kaviyarasu A, MIT Aerospace, Chennai



Distortions by Magnetometer
• Magnetometer are very trick one to calibrate.
• Like accelerometer and gyroscope magnetometer also subject to cross-axis

misalignment, output bias ,scale factors.
• In addition to that, local magnetic field around the magnetometer can be distorted

by magnetic and ferrous metal objects. This distortion must be measured and
corrected in order for the magnetometer to be useful.

• The field can also be distorted by time-varying electromagnetic waves from high-
power electrical lines and communication lines placed near the sensor.

• Finally, as the sensor is moved around in practice, the field can be distorted so
that, in certain locations (say, next to a concrete wall filled with rebar), the
accuracy of the measurement is reduced.
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• After the magnetometer measurement is corrected for axis misalignment, scale
factor, and bias errors, it must be corrected for additional local magnetic field
distortions.

 1 1b= ( ) ( )b b m bS T M b T  

1

1

magnetic field

Measured magnetic field

inverse of the magnetometer sensitive matrix

inverse of the magnetometer misalignment matrix

( ) magnetometer bias vector

m

b

b

b

b

b

S

M

T













 

Kaviyarasu A, MIT Aerospace, Chennai



• Two types of local distortions are there
– Soft-Iron Distortion.
– Hard -Iron Distortion.

• A soft-iron field distortion is caused by ferrous metal objects that bend the Earth’s
magnetic field e.g. Screws

• A hard-iron distortion is caused by near by object having its own magnetic field
like permanent magnets motor or current carrying conductors.

• In the absence of any hard or soft-iron distortions, the outputs of the magnetometer
as it is rotated should trace out a perfect sphere centered around zero.

• Soft-iron distortions distort the sphere so that it appears to be an ellipsoid. Hard-
iron distortions shift the mean of the sphere away from zero
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• One way to calibrate the magnetometer for hard and soft iron distortions is to fit
an ellipsoid to a set of magnetometer data collected over a wide variety of
different orientations. The center of the ellipsoid is equivalent to the bias caused
by hard iron distortions, while the ellipsoid shape on the x, y, and z axes are
caused by the soft-iron distortions. A correction matrix can then be calculated
that, when multiplied by the magnetometer measurements, alters the ellipsoid so
that it looks like a sphere again.
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Sensor data fusion
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• The sensor fusion can be implemented by some of the steps below
-Complementary Filter (CF)
-Kalman Filter (KF)
-Extended Kalman Filter (EKF)
-Unscented Kalman Filter (UKF)
-Particle Filter (PF)
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• Nothing but fusion of data’s from two or more sensor.
• The data measured from a single sensor not gives accurate measurement of

reading. It may suffer from some noise ,errors ,misalignment and external
disturbance.

• In order to measure the exact physical quantity of data ,two or more sensors are 
used. these data's are fused in such a way it will provide original measurement of 
the physical quantity.
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Combining accelerometer and rate 
Gyro data

• Angle estimates based on rate gyros alone drift over time, making them unreliable
in the long-term purpose or application.

• Angle estimates based on accelerometers do not cause angle estimates to drift, but
they are sensitive to external forces like vibration, making short-term estimates
unreliable.

• Here we are going to discuss about how to combine the outputs of both types of
sensor to produce angle estimates that are resistant to both vibration and immune
to long-term drift.

• Here the step is classified into two types
– Prediction (by using gyroscope reading to measure incremental changes in the

angle).
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• Estimation (by means of using accelerometer reading to correct the rate gyro
drift).

• In updating step we assume accelerometer based angle estimation is close to true
value .

• We take the measured angle (from the accelerometers) and the predicted angle
(from the rate gyros), compute the difference, and add a portion of the difference
to the final angle estimate.

 

 

 

estimate accelgyro gyro

estimate accelgyro gyro

estimate maggyro gyro

L

L

L

   



 

 

 

  

    

     

Kaviyarasu A, MIT Aerospace, Chennai



• L is numeric value between 0 and 1.

• As approaches L=1, the accelerometers are trusted more and the rate gyros are trusted
less. This makes the angle estimates less sensitive to rate gyro noise and biases, but
more sensitive to vibration and other external forces.

• As approaches L=0, rate gyros are trusted more and the accelerometers are trusted
less. This makes the angle estimates more sensitive to rate gyro noise and biases, but
less sensitive to vibration and other external forces.

 0  gyro based angle mesurement is used 

                   (accelerometer measurment become zero) 

 1  accelerometer based angle mesurement is used 

                   (gyros measurment become z

if L

if L
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• This formulation can be called a “fixed-gain observer” and it looks similar to that
of Kalman Filter.

• The main difference is that in a Kalman Filter, the observer gain is selected
optimally using known characteristics of the physical system.

• In addition, a Kalman Filter can exploit knowledge of the physical system so that
accelerometer data (and other data) needn’t be converted to angles before using it
to make corrections to the angle estimates.
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Complementary filter

angle = 0.98*(angle+gyrodata*dt) +0.02*(accData);
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Combining Barometer 1&2 
using Complementary filter

 12 2altitude BarometerBarometer BarometerH H L H H   

Barometer 1 Barometer 2
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Combining Barometer 
Altitude and Sonar using 

Complementary filter

   altitude BarometerUltrasonic sensor Ultrasonic sensorH H L H H   

Barometer Ultrasonic Sensor
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Combining Barometer 
Altitude Infrared sensor 

using Complementary filter

Barometer Infrared Proximity sensor

  Proximity  Proximity altitude BarometerInfrared sensor Infrared sensorH H L H H   
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Combining GPS altitude and 
Barometer Altitude using 

Complementary filter

 altitude GpsreceiverBarosensor BarometerH H L H H   

GPS Barometer
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• A prime meridian is a meridian, i.e., a line of longitude, at which longitude is
defined to be 0°.

• This great circle divides the sphere, e.g., the Earth, into two hemispheres. If one
uses directions of East and West from a defined prime meridian, then they can be
called Eastern Hemisphere and Western Hemisphere.

• Prime meridian connects pole to poles covers a distance of about 20,000 km.
• Why does the Prime Meridian (Zero Longitude) pass through Greenwich?

-The International Meridian Conference took place in October 1884 in
Washington DC. Twenty-five nations were represented at the conference by 41
delegates. The Greenwich Meridian was chosen to become the Prime Meridian of
the World. There were several reasons for this; the main one being that nearly
two thirds of the World's ships were already using charts based on it.
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• Latitude tells you how far north or south of the Equator you are located.
• Longitude is the location of a place east or west of a north-south line called the 

prime meridian.
• Longitude is measured in angles ranging from 0° at the Prime Meridian to 180° at 

the International Date Line.
• Local meridian is a great circle passing through celestial poles and zenith of a 

particular location.
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A clock wise rotation over east axis by an angle to align the up axis with the z axis
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• The Earth Centered Earth Fixed (ECEF) frame is converted into NED frame by
using the rotational matrix.
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Combining INS position with 
GPS Position using 

Complementary filter

INS

GPS Inertial Sensor
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Thank you
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